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Existence of Autocrine Loop Between Interleukin-6 and
Transforming Growth Factor-3 in Activated Rat
Pancreatic Stellate Cells
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Abstract Interleukin (IL)-6 is a proinflammatory cytokine assumed to participate in pancreatic fibrosis by activating
pancreatic stellate cells (PSCs). Autocrine TGF-B; is to central in PSC functional regulation. In this study, we examined IL-6
secretion from culture-activated rat PSCs and its regulatory mechanism. Activated PSCs express and secrete IL-6. When
anti-TGF-B; neutralizing antibody was added in the culture medium, IL-6 secretion from activated PSCs was inhibited,
whereas exogenous TGF-B; added in the culture medium enhanced IL-6 expression and secretion by PSCs in a dose
dependent manner. Infection of PSCs with an adenovirus expressing dominant-negative Smad2/3 attenuated basal and
TGF-B,-stimulated IL-6 expression and secretion of PSCs. We also demonstrated the reciprocal effect of PSCs-secreted IL-6
on autocrine TGF-B;. Anti-IL-6 neutralizing antibody inhibited TGF-B; secretion from PSCs. Preincubation of cells with
10 nM PD98059, an extracellular signal-regulated kinase (ERK)-dependent pathway inhibitor, attenuated IL-6-enhanced
TGF-B expression and secretion of PSCs. In addition, IL-6 activated ERK in PSCs. These data indicate the existence of
autocrine loop between IL-6 and TGF-B; through ERK- and Smad2/3-dependent pathways in activated PSCs. J. Cell.

Biochem. 99: 221-228, 2006. © 2006 Wiley-Liss, Inc.
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Interleukin-6 is a multifunctional cytokine
that regulates various immune and inflamma-
tory responses in various tissues including
gastrointestinal organs [Ishihara and Hirano,
2002]. For example, IL-6 plays a role in the
perpetuation of inflammation in inflammatory
bowel diseases [Ishihara and Hirano, 2002]. As
to pancreas, increased serum IL-6 mediates
local and systemic inflammatory responses in
the early phase of acute pancreatitis [Bentrem
and Joehl, 2003]. In chronic pancreatitis
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patients, the serum concentration of IL-6 is still
elevated [Bamba et al., 1994]. In addition, IL-6
is expressed in pancreatic tissue of experimen-
tal chronic pancreatitis [Xie et al., 2001]. Thus,
it has been postulated that IL-6 participates in
chronic pancreatitis as well.

Pancreatic stellate cells (PSCs) are recently
identified, isolated, and characterized [Apte
et al., 1998; Bachem et al., 1998]. In the normal
pancreas, PSCs possess fat droplets containing
vitamin A and are quiescent defined with
desmin positive but a-smooth muscle actin (a-
SMA) negative staining [Bachem et al., 1998].
When cultured in vitro, PSCs are auto-activated
(auto-transformed) changing their morphologi-
cal and functional features [Apte et al., 1998].
PSCs commence losing vitamin A containing
lipid droplets, highly proliferating, increasing
expression of a-SMA, and producing and secret-
ing extracellular matrix components such as
collagen and fibronectin. Namely, PSCs are
auto-transformed to myofibroblast-like cells.
In vivo, PSCs are also activated during both
human and experimental pancreatic fibrosis
[Haber et al.,, 1999]. Therefore, PSCs are
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thought to play an important role in pancrea-
tic fibrogenesis. Recently, IL-6 has been shown
to increase the expression of a-SMA, a param-
eter of PSC activation, and collagen in PSCs
[Mews et al., 2002]. Thus, IL-6 is assumed to
promote pancreatic fibrosis by stimulating
PSCs.

TGF-B; is one of major profibrogenic cyto-
kines that play a role in pancreatic fibrosis.
TGF-B; expression is observed in the fibrotic
regions of the pancreas of chronic pancreatitis
patient [Haber et al., 1999]. Ectopic overexpres-
sion of TGF-B; in pancreatic islets induced
severe fibrosis of pancreatic exocrine glands
[Lee et al., 1995]. Furthermore, TGF-B; is to
central in regulating PSC functions. For
instance, TGF-B; activates PSCs, inhibits PSC
growth and enhances extracellular matrix
production and secretion [Apte et al., 1999;
Kruse et al., 2000]. TGF-p; intracellular signal-
ing is mediated through multiple pathways:
Smad-2/3-dependent or -independent ones
[Massague, 1998; Attisano and Wrana, 2002].
In Smad2/3-dependent pathway, upon binding
to its receptor complex, TGF-B; activates type I1
receptor leading to the phosphorylation of
Smad2 and Smad3. Phoshphorylated Smad2
or Smad3 (Smad2/3) binds to Smad4 and
entered the nucleus, where Smad2/3-Smad4
complex promotes target gene transcription. In
Smad2/3-independent pathway, various mito-
gen-activated protein kianses such as p38 and
ERK are involved [Attisano and Wrana, 2002].
Recently, we have shown that TGF-3; regulates
multiple PSC functions via distinct intracellu-
lar signaling pathways [Ohnishi et al., 2004].
Since TGF-B; is a major regulator of PSC
functions and is currently assumed to be a
candidate of target molecules of the treatment
for pancreatic fibrosis, it is important to eluci-
date which pathway mediates TGF-B; diverse
effects on PSC functions.

Activated PSCs have been shown to secrete
multiple cytokines that modulate their own
functions including TGF-B, [Kruse et al., 2000]
and activin A [Ohnishi et al., 2003]. We thus
hypothesized that activated PSCs may express
and secrete IL-6. In this study, therefore, we
investigated IL-6 expression and secretion of
activated PSCs and its regulatory mechanism.
We report here that TGF-f; increases IL-6
mRNA expression and peptide secretion of acti-
vated PSCs in an autocrine manner. Further,
we show that Smad2/3-dependent signaling

pathway mediates TGF-B; enhancement of
IL-6 expression and secretion of PSCs. Finally,
we demonstrate that IL-6 increases TGF-;
expression and secretion of PSCs via an ERK-
dependent pathway, indicating the existence
of autocrine loop between IL-6 and TGF-B; in
activated PSCs

MATERIALS AND METHODS
Materials

TGF-B;, Nycodenz, and pronase were pur-
chased from Sigma (St. Louis, MO). IL-6, anti-
IL6, and anti-TGF-B; neutralizing antibodies
were from R&D (Abrington, UK). DNase I was
from Roche (Basel, Switzerland). Collagenase P
was from Boehringer Mannheim (Mannheim,
Germany). PD98059 was from Calbiochem (San
Diego, CA). Anti-ERK antibody was from Santa
Cruz (Santa Cruz, CA). Anti-phospho-ERK anti-
body was from Cell Signaling (Beverly, MA).
Horseradish peroxidase (HRP)-conjugated don-
key anti-rabbit IgG and HRP-conjugated don-
key anti-mouse IgG were from Jackson Immuno
Research (West Grove, PA).

Isolation and Culture of Rat
Pancreatic Stellate Cells

Rat pancreatic stellate cells were prepared as
described [Apte et al., 1998]. Briefly, rat pan-
creas was digested in Gey’s balanced salt
solution supplemented with 0.05% collagenase
P, 0.02% pronase, and 0.1% DNase. After
filtration through nylon mesh, cells were cen-
trifuged in a 13.2% Nycodenz gradient at 1,400g
for 20 min. PSCs in the band just above the
interface of the Nycodenz solution and the
aqueous one were collected, washed and resus-
pended in Iscove’s modified Dulbecco’s medium
containing 10% fetal calf serum, 100 U/ml
penicillin, and 100 pg/ml streptomycin. PSCs
were cultured in a 5% CO4 atmosphere at 37°C.
All experiments were carried out using culture-
activated PSCs between passages two and
three.

Adenovirus Infection

Recombinant adenovirus of dominant-nega-
tive Smad2/3 (AdDNSmad2/3) was kindly pro-
vided by Dr. Miyazono (University of Tokyo,
Japan). For adenovirus infection, cells were in-
fected with a recombinant adenovirus at a dose
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of 10 plaque-forming units (pfu) per cell in the
culture media described above. An adenovirus
expressing B-galactosidase (AdLacZ) was used
as an infection control.

Measurement of IL-6 and TGF-$,
Peptides Secretion

Secretion of IL-1p and TGF-B; peptides was
measured by determining their concentration
in the culture medium using commercial ELISA
kits (Biosource International, Camarillo, CA;
DRG International, Mountainside, NdJ), accord-
ing to the manufacturers’ instructions.

RT-PCR

Total RNA was isolated from PSCs using
TRIzol reagent (Life Technologies BRL, Grand
Island, NY). First-strand cDNA was made from
total RNA using ReverTra Ace system (Toyobo,
Tokyo, Japan) according to the manufacturer’s
instructions. PCR for TGF-B, was performed
using PCR kit for rat TGF-p; (Maximbio, San
Francisco, CA) according to the manufacturer’s
instructions. PCR for rat IL-6 and GAPDH was
performed using the following primers: (a) rat
IL-6: sense, 5'-CTGGTCTTCTGGAGTTCCG-
TTTC-3'; anti-sense, 5'-CATAGCACACTAGG-
TTTGCCGAG-3’; (b) rat GAPDH: sense, 5'-
CATGACCACAGTCCATGCCATC-3, anti-sense,
5-CGTTGCT-GTAGCCATATTC-3'. The reac-
tions were conducted with the following cycle
conditions: denaturation at 94°C for 0.5 min,
annealing at 45°C for 1 min, and extension at
72°C for 1 min for 30 cycles.

Western Blotting

Western blotting was carried out as described
before, [Ohnishi et al., 1997] using enhanced
chemiluminescence reagent to visualize the
secondary antibody.

Statistical Analysis

The data was analyzed by ANOVA to deter-
mine statistical significance and P < 0.05 was
considered significant.

RESULTS
Activated Rat PSCs Secrete IL-6

We first examined whether activated rat
PSCs secrete IL-6. As shown in Figure 1, ELISA
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Fig. 1. IL-6 secretion from activated PSCs. IL-6 concentration in
culture medium was determined with ELISA 1-2 days after the
culture medium was changed. Values are mean + SE for three
independent experiments.

revealed that IL-6 peptide was present in PSC
culture medium. IL-6 concentration in PSC
culture medium increased during 2 days incu-
bation. No IL-6 activity was detected in fresh
culture medium. These data indicate that
activated PSCs secrete IL-6.

Autocrine TGF-3; Stimulates IL-6
Secretion From PSCs

Showing that IL-6 is secreted from activated
PSCs, we next attempted to elucidate the
mechanism that regulates IL-6 secretion from
PSCs. Since autocrine TGF-B; plays central
roles in the regulation of PSC functions, we
examined the participation of autocrine TGF-f3;
in IL-6 secretion from PSCs using anti-TGF-f;
neutralizing antibody. As shown in Figure 2,
anti-TGF-B; neutralizing antibody added in
the culture medium inhibited IL-6 secretion
from activated PSCs in a dose dependent
manner. In contrast, non-immune IgG did not
alter it. These data indicate that autocrine TGF-
B; stimulates IL-6 secretion from activated
PSCs.

Exogenous TGF-B, Increases IL-6 Expression
and Secretion of Activated PSCs

As an independent experiment examining
TGF-B; stimulatory effect on IL-6 secretion
from PSCs, we next examined the effect of
exogenous TGF-B; on the IL-6 expression and
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Fig. 2. Effect of anti-TGF-B; neutralizing antibody and non-
immune IgG on IL-6 secretion from PSCs. Concentration of IL-6
secreted from PSCs into culture medium was determined with
ELISA after 48 h incubation with indicated amounts of anti-TGF-
B4 antibody (open circles) or non-immune 1gG (closed circles).
Values are mean=+SE for three independent experiments.
*P < 0.05 versus control.

secretion of PSCs. As shown in Figure 3, TGF-B,
added in the culture medium increased both
IL-6 mRNA expression and peptide secretion of
PSCs in a dose dependent manner. These data
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Fig. 3. Exogenous TGF-B; enhanced IL-6 expression and
secretion by activated PSCs. Cells were incubated for 48 h with
the indicated amounts of TGF-B,. After the incubation, IL-1B
mRNA expression was determined with RT-PCR using GAPDH
mRNA expression as a control. Concentration of IL-6 secreted
from PSCs into culture medium during the incubation was
determined with ELISA. Values are mean = SE for three indepen-
dent experiments.

reinforce that autocrine TGF-f; enhances IL-6
secretion from PSCs.

Autocrine TGF-3; Enhances IL-6 Expression
and Secretion by PSCs Through
Smad-Dependent Pathway

We next examined the intracellular signaling
pathway through which TGF-B; stimulates IL.-6
expression and secretion by PSCs. TGF-f;
intracellular signaling is mediated by Smad-
dependent or Smad-independent pathway. We
thus investigated whether TGF-B; stimulates
IL-6 expression and secretion of PSCs through
Smad-dependent pathway. For this purpose, we
used adenovirus vector of dominant-negative
Smad2/3 (AdDNSmad2/3). This dominant-
negative Smad2/3 mutant was generated by
substituting Glu for Asp-407 of smad3, which
renders it defective in TGF-p receptor-depen-
dent phosphorylation. Nevertheless, this mu-
tant possesses a dominant-negative effect on
both Smad2 and Smad3 [Goto et al., 1998]. We
utilized an adenovirus expressing B-galactosi-
dase (AdLacZ) as an infection control. We
previously reported that more than 98% PSCs
are infected with these adenovirus vectors and
expressed sufficiently each protein [Ohnishi
et al., 2004]. In addition, the infections of these
adenoviruses do not affect TGF-B; mRNA
expression or peptide secretion by PSCs
[Ohnishi et al., 2004]. Therefore, we can observe
the effect of these adenoviruses infections on IL-
6 expression and secretion by PSCs modulated
by autocrine TGF-p,, regardless of the effect of
the infection on the amount of autocrine TGF-
B1. As shown in Figure 4, when Smad-depen-
dent pathways were blocked by AADNSmad2/3
infection, both basal IL-6 mRNA expression
(Fig. 4: RT-PCR; compare first and third lanes)
and basal peptide secretion (Fig. 4: ELISA;
compare first and third columns) of PSCs were
attenuated compared to AdLacZ-infected con-
trols. Since infection with AdDNSmad2/3 or
AdLacZ does not alter autocrine TGF-B; secre-
tion from PSCs as reported previously [Ohnishi
et al., 2004], these data indicate that autocrine
TGF-B; stimulates IL-6 mRNA expression and
peptide secretion in an autocrine manner via
Smad-dependent pathway. Moreover, AADNS
mad2/3 attenuated exogenous TGF-B; enhanc-
ed IL-6 expression and secretion (Fig. 4), thus
reinforcing our suggestion that TGF-p; stimu-
lates IL-6 expression and secretion via Smad-
dependent pathway.
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Fig. 4. Adenovirus-mediated expression of dominant-negative
Smad2/3 inhibited IL-6 expression and secretion by activated
PSCs. PSCs were infected with 10 pfu/cell AdlLacZ or
AdDNSmad2/3, then incubated for 48 h with or without 2 ng/
ml TGF-B;. After the incubation, IL-1p mRNA expression was
determined with RT-PCR using GAPDH mRNA expression as a
control. Concentration of IL-6 secreted from PSCs into culture
medium during the incubation was determined with ELISA.
Values are mean + SE for three independent experiments.

Autocrine IL-6 Stimulates TGF-$3,
Secretion From Activated PSCs

Since exogenous IL-6 modulates PSC func-
tions [Mews et al., 2002] and increases TGF-;
expression and secretion of activated PSCs (our
data submitted for publication), we hypothe-
sized that IL-6 secreted from PSCs may also
increase the TGF-B; autocrine secretion from
PSCs. To test this hypothesis, we examined the
effect of anti-IL-6 neutralizing antibody on
TGF-B; secretion from activated PSCs. As
shown in Figure 5, anti-IL-6 antibody added
into culture medium attenuated TGF-p; secre-
tion from PSCs in a dose dependent manner. In
contrast, non-immune IgG did not affect TGF-;
secretion from PSCs. These data indicate that
autocrine IL-6 stimulated TGF-B; secretion
from activated PSCs.

IL-6 Increases TGF-B; mRNA Expression and
Peptide Secretion by PSCs Through
ERK-Dependent Pathway

Showing that autocrine IL-6 enhances TGF-
B secretion from PSCs, we next attempted to
elucidate the intracellular signaling pathway
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Fig. 5. Effect of anti-IL-6 neutralizing antibody and non-
immune 1gG on TGF-B, secretion from PSCs. Concentration of
TGEF-B, secreted from PSCs into culture medium was determined
with ELISA after 48 h incubation with indicated amounts of anti-
IL-6 antibody (open circles) or non-immune IgG (closed circles).
Values are mean=+SE for three independent experiments.
*P < 0.01 versus control.

through which IL-6 stimulates TGF-B; secre-
tion by PSCs. Since ERK is one of IL-6 signaling
mediators [Ishihara and Hirano, 2002], we
examined the participation of the ERK-depen-
dent pathway in IL-6 stimulation of TGF-B;
secretion by PSCs. For this purpose, we first
examined whether exogenous IL-6 activates
ERK in PSCs using western blotting with anti-
phospho-ERK antibody. As shown in Figure 6A,
100 ng/ml IL-6 enhanced ERK phosphorylation
and maximum enhancement was observed at
10 min incubation, indicating that IL-6 acti-
vates ERK in PSCs. We then investigated the
effect of ERK-dependent pathway inhibitor,
PD98059 on the IL-6 enhancement of TGF-f;
expression and secretion in activated PSCs.
We have previously demonstrated that prein-
cubation with 10 nM PD98059 blocks ERK-
dependent pathway in PSCs [Ohnishi et al.,
2004]. In naive cells, 100 ng/ml exogenous IL-6
augmented TGF-B; expression and secretion,
which is consistent with our recent data (sub-
mitted for publication). When cells were pre-
treated with PD98059, IL-6 could not increase
TGF-B; expression or secretion of activated
PSCs (Fig. 6B). These data suggest that IL-6
enhances TGF-$; mRNA expression and secre-
tion of activated PSCs through ERK-dependent
pathway.

DISCUSSION

In this study, we demonstrated that activated
PSCs express and secrete IL-6. Furthermore,



226 Aoki et al.

A
phospho- < pidd
ERK — «-pi2
K | | o2
015 10 30
Incubation time (min})
B
(RT-PCR)
(pg/ml)

—
(=]
ors

Secreted TGF-
n
e

[ =]

= 150 =
o
(ELISA)
T contral PD98059

c1|n|5:1§nm] - + = +

Fig. 6. ERK mediates IL-6-induced TGF-B; expression and
secretion of activated PSCs. A: Effect of IL-6 on ERK activation in
activated PSCs. Cells were incubated with 100 ng/ml IL-6 for
indicated times. The activation of ERK was then determined with
Western blotting using anti-phosphorylated ERK antibody (upper
panel). Western blotting using anti-ERK antibody was carried out
as an internal control (lower panel). Data are representative
of three independent experiments with similar results. B: Effect of
MEK1 inhibitor PD98059 on TGF-B; expression and secretion of
activated PSCs. After 2 h of pretreatment with or whithout 10 nM
PD98059, cultured PSCs were incubated for 48 h in the presence
orabsence of 100 ng/ml IL-6. After the incubation, TGF-; mRNA
expression was determined with RT-PCR, using GAPDH mRNA
expression as an internal control. TGF-B; peptide secreted into
culture medium from PSCs during the incubation was quantified
with ELISA. Values are mean=+SE for three independent
experiments.

TGF-B; enhances IL-6 expression and secretion
through Smad2/3 dependent pathway. Recipro-
cally, IL-6 increases TGF-B; expression and
secretion of activated PSCs through ERK
dependent pathway. We also demonstrated that
anti-TGF-B; and anti-IL-6 neutralizing antibo-
dies attenuate IL-6 and TGF-B; secretion from
activated PSCs, respectively. Accordingly,
there exist an autocrine loop between IL-6 and
TGF-B; through ERK- and Smad2/3-dependent
pathways in activated PSCs.

IL-6 is a multifunctional cytokine that parti-
cipates in both acute and chronic inflammation.
The process of IL-6-involved inflammation has
been studied mainly on the autoimmune and
chronic inflammatory diseases such as rheuma-
toid arthritis and inflammatory bowel diseases
[Ishihara and Hirano, 2002]. In the acute phase
of these diseases, IL-6 mediates acute responses
including production of acute-phase proteins
such as C-reactive protein and the activation of
the complement system [Papanicolaou et al.,
1998]. In the chronic phase of the inflammation,
IL-6 continuously supports the survival and the
growth of lymphocytes and myeloid cells, lead-
ing to the amplification and the perpetuation of
the inflammation [Ishihara and Hirano, 2002].
As to pancreatic inflammation, similar process
of IL-6 participation in acute and chronic
pancreatitis has been studied. In acute pan-
creatitis, serum IL-6 level is elevated, which is
related to the severity and the systemic compli-
cations [Heresbach et al., 1998], suggesting that
IL-6 directly mediates systemic inflammatory
responses in acute pancreatitis. In chronic
pancreatitis, although systemic inflammation
is readily resolved, serum IL-6 level is still
elevated [Bamba et al., 1994] and IL-6 is
expressed in pancreatic tissue of experimental
chronic pancreatitis, especially in infiltrated
inflammatory cells [Xie et al., 2001]. In addition,
IL-6 activates PSCs and enhances their collagen
production [Mews et al., 2002]. Thus, in chronic
pancreatitis, it has been assumed that IL-6
secreted from inflammatory cells promotes
pancreatic fibrosis by activating PSCs in a
paracrine mechanism. However, our current
observations that activated PSCs express and
secrete IL-6 indicate that activated PSCs are
also the source of IL-6 in the pancreatic tissue of
chronic pancreatitis. Thus, it is reasonable to
speculate that IL-6 secreted from PSCs may
perpetuate chronic pancreatic inflammation by
stimulating inflammatory cells in chronic pan-
creatitis in a paracrine manner. Furthermore,
IL-6 secreted from PSCs modulates TGF-B;
secretion of PSCs (Fig. 5) indicating that IL-6
also promotes pancreatic fibrosis by regulating
PSC function in an autocrine fashion.

Since both IL-6 and TGF-pB; play pivotal roles
in various inflammatory diseases, much atten-
tion has been paid to the interaction between
the two cytokines. To date, IL-6 diverse effects
on TGF-B; action has been demonstrated. In
human renal epithelial cells, IL-6 augments
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TGF-B, signaling by modulating the trafficking
of TGF-B; receptors [Zhang et al., 2005]. More-
over, we have recently elucidated that exogen-
ous IL-6 increases TGF-B; expression and
secretion by activated PSCs (submitted for
publication). Thus, current study has extended
the knowledge obtained from previous studies
by showing the autocrine loop between IL-6 and
TGF-B; and elucidating its intracellular signal-
ing pathways.

TGF-B¢ has been implicated in the etiology of
pancreatic fibrosis. TGF-p is also secreted from
PSCs and regulates multiple PSC functions,
including activation, proliferation, and extra-
cellular matrix production [Kruse et al., 2000;
Mews et al., 2002]. Our current data that
autocrine TGF-B; increases IL-6 secretion of
activated PSCs demonstrate another novel
TGF-B; effect on PSC function. Since IL-6
supports the survival and the growth of inflam-
matory cells as described above, these data
suggest that autocrine TGF-B; promotes pan-
creatic fibrosis, at least in part, by sustaining
pancreatic inflammation by increasing IL-6
secretion from PSCs. Furthermore, the recipro-
cal effect of autocrine IL-6 on TGF-B; secretion
from PSCs is also important in the progression
of pancreatic fibrosis. TGF-B; is a major acti-
vator of PSCs. When intracellular TGF-B;
signal transduction pathway toward PSC acti-
vation was blocked, a-SMA expression in PSCs,
a parameter of PSC activation, was attenuated
[Ohnishi et al., 2004], suggesting that autocrine
TGF-B; stimulus is essential for PSCs to main-
tain their own activation. In this respect, our
present data indicate that autocrine IL-6 parti-
cipatesin the perpetuation of pancreatic fibrosis
by sustaining PSC activation by increasing
autocrine TGF-f;.

TGF-B; has been shown to induce IL-6
expression in various types of cells including
lung fibroblasts, osteoblasts, and prostate can-
cer cells [Eickelberg et al., 1999; Franchimont
et al.,, 2000; Park et al.,, 2003]. TGF-B; in-
tracellular signaling is mediated through
Smad-dependent and/or-independent pathway
[Massague, 1998; Attisano and Wrana, 2002].
In lung fibroblasts, TGF-B; induces IL-6 expres-
sion via activating protein-1 (AP-1) dependent
transcription [Eickelberget al., 1999]. Although
AP-1 is known to cooperate with Smads in the
transcription of various genes, it is still uncer-
tain whether Smad2/3 participates in IL-6
transcription in lung fibroblasts. Recently, Park

et al. reported that TGF-B; induce IL-6 expres-
sion in prostate cancer cells through multiple
signaling pathways, including Smad2 and
MAPKSs [Park et al., 2003]. They showed that
blockade of Smad2-dependent pathway with
dominant-negative Smad2 expression attenu-
ated IL-6 expression and secretion but could not
completely block TGF-B; effect on IL-6 expres-
sion and secretion, indicating that TGF-B;
induces IL-6 expression and secretion through
both Smad-dependent and Smad-independent
pathway in prostate cancer cells. In our present
study, however, expression of dominant-nega-
tive Smad2/3 completely blocked TGF-3, effect
on IL-6 expression in activated PSCs (Fig. 4).
Furthermore, expression of dominant-negative
Smad2/3 strongly inhibited both basal and
TGF-B;-stimulated IL-6 secretion from acti-
vated PSCs. Thus, it is reasonable to conclude
that Smad2/3 dependent pathway mainly med-
iates TGF-B; effect on IL-6 expression and
secretion of activated PSCs.

In conclusion, we demonstrate the autocrine
loop between TGF-f3; and IL-6 in activated PSCs
via Smad- and ERK-dependent pathways,
respectively. These observations provide new
insights for understanding the mechanism of
pancreatic fibrosis and developing a novel
therapeutic strategy for its treatment.
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